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Conversion Factors, Non-SI to SI
Units of Measurement

Non-SI units of measurement in this report can be converted to SI units as
follows:
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Btu (International Table) per 4,186.8 Joules per kilogram kelvin
pound (mass) • degree
Fahrenheit
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kips 4.448222 kilonewtons

microinches per inch 1.0 micromillimetreslmillimetre

pounds (force) per square 0.006894757 megapascals
inch

pounds (mass) per cubic Inch 27,679.899 kilograms per cubic metre
STo obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the
following formula: C - (519)(F-32). To obtain Kelvin (K) readings, use: K - (5/9)(F-32) +
273.15.
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1 Introduction

Background

In 1983, the U.S. Army Engineer Waterways Experiment Station
(WES) was requested by the U.S. Army Engineer (USAE) District,
St. Louis, to analyze the lower gate monolith (L-17) and one intermediate
lock chamber monolith (L-13) of the Melvin Price Locks and Dam on the
Mississippi River for thermal and construction induced stresses using the
finite element method (FEM). Phase I of this thermal study (Bombich,
Norman, and Jones 1987) addressed the following four principal issues:

a. Select the most effective finite element (FE) analysis program to
perform the thermal stress analysis.

b. Verify the FE analysis program on problems with known results.

c. Perform two-dimensions (2-D) analysis of the L-13 and L-17
monoliths of Melvin Price Locks and Dam and compare with
previous analysis method results.

d. Perform a three-dimensional (3-D) analysis of these monoliths.

The PHASE I study was a cooperative effort between the Information
Technology Laboratory (ITL) and the Structures Laboratory (SL) of WES.
Numerous coordination meetings were held during the life of the project
between personnel of the USAE District, St. Louis, SL, ITL, the Lower
Mississippi Valley Division, and Headquarters, U.S. Army Corps of En-
gineers, to review progress and address problems as they occurred.

Summary of Previous Study

The Phase I study resulted in the selection of the general-purpose struc-
tural and heat transfer FE program, ABAQUS (Hibbitt, Karlsson, and
Sorensen, Inc., 1987). The ABAQUS program was selected because of it
flexibility and capability to perform the desired heat transfer and thermal
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stress analysis. ABAQUS also had good pre- and postprocessing capabil-
ities and was readily available to USAE field offices. It has a broad range
of finite elements in its library which may be used separately or in com-
bination as necessary for the type of analysis performed. Although
ABAQUS has several material constitutive models, it was necessary to
use the added capability of a user-defined constitutive material model
entered through a user-supplied subroutine. The user-defined material
model subroutine used in this study was developed by Anatech, Inc. The
ABAQUS program has the ability to perform both static and time-history
stress analyses. Although not used in this study, reinforcement (rebars)
can be added to most elements, if desired. The heat transfer analysis can
be transient or steady-state. A wide variety of boundary conditions re-
qui;ed for both the stress and heat transfer analyses performed in this
study are available in the ABAQUS program.

The Phase I study then investigated whether or not ABAQUS could ef-
fectively perform an incremental construction analysis as required for
both the temperature and stress analyses. In the method developed to per-
form this staged construction analysis, the structure is modeled con-
tinuously at specified stages during its construction, with stresses and
temperatures accumulated during the entire construction sequence.

A series of verification problems were examined to ensure that ABAQUS
was operating properly and that the analysts could adequately model all of
the desired behavior characteristics expected within the structure during
the incremental construction process. After some necessary modifications
to ABAQUS, it was determined that the desired 2-D analyses could be per-
formed satisfactorily.

Next, the 2-D analyses of L-13 and L-17 were performed. As a result
of these analyses, it was further determined that the ABAQUS program
could adequately model the phenomena that occur during the incremental
construction process on a full-scale structure. However, it was also deter-
mined that certain refinements to the user-supplied constitutive model
were necessary to accurately predict the stresses, deflections, and pile
loads within the monoliths. The pile loads were observed to be particu-
larly dependent upon the modulus and creep properties used in the user-
supplied constitutive model. It was clear from this phase I study that the
early-age modulus of elasticity predicted by the material model was
higher than that of the actual Melvin Price Locks and Dam concrete. It
was also evident that the creep and shrinkage numerical models used in
the constitutive model should be more carefully examined and refined to
ensure that they adc•quately represent the actual behavior of the concrete.

The 3-D analyses were not completed because computer costs became
prohibitive. The grids and input data for these analyses were retained so
that they could be completed at a later time when they proved to be more
economically feasible.
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Objective of Phase II Study

The objective of the portion of the Phase II study documented within
this report is a reanalysis of monoliths L-13 and L-17 with a revised con-
stitutive model that more accurately models the behavior of the concrete
from Melvin Price Locks and Dam. Particular emphasis will be given to
examining the stresses within the monoliths and the loads within the piles.
The parameters used in the revised material model will be presented
herein. However, another report (Bombich, Norman, and Garner 1991)
from this Phase II study documents the testing, calibration, and verifica-
tion procedures employed to develop this more accurate material model.

Revised Material Model for Phase II Study

As stated above, one part of the Phase II study was to calibrate the
material model to more accurately reflect the behavior of the Melvin Price
Locks and Dam concrete. Only the resulting parameters are reported in
this report. A more comprehensive discussion of the procedure used to
develop these parameters is presented by Bombich, Norman, and Garner
(1991). It was evident that the material behavior was not known to the ex-
tent that single curves for modeling the material behaviors of adiabatic
temperature rise, modulus of elasticity, creep, and shrinkage could be
determined. It was decided that a more realistic approach would be to use
bounds on these parameters which reflect the confidence with which each
is knuwn. Plots of the curves reflecting these bounds for adiabatic
temperature rise, modulus of elasticity, creep, and shrinkage are shown in
Figures 1 through 4, respectively. The revised user-supplied subroutine
which defines the material constitutive model was used. The revised
material input information necessary for the ABAQUS data file is given in
Appendix A. No changes were made to the temperature analysis data
input since all modifications were in the temperature rise subroutine.

Finite Element Models

The FE grids developed for the initial Phase I study (Bombich, Nor-
man, and Jones 1987) were used in this reanalysis. The 2-D grid for
monolith L-13 is shown in Figure 5. This temperature analysis model con-
tains 160 elements for the structure and soil foundation. Figure 6 shows
the 2-D grid for monolith L-17. This temperature analysis model contains
316 elements for the structure and soil foundation. The stress analysis
models for both monoliths use the same grids but do not include the soil
foundation elements.

Chapter 1 Introduction



Additional Input Parameters

The additional input data required for the analyses are boundary condi-
tions, material properties, pile locations, pile properties, and load step in-
formation. These data are taken form the Phase I study and are detailed
by Bombich, Norman, and Jones (1987). They will not be presented again
in this report. The bulk data file for the stress analysis was modified
slightly to reflect the new material model (Appendix A).

Loading Conditions

After the incremental construction temperature analysis is performed
for the structural and soil foundation system, the resulting temperature his-
tory is then used as a loading for the incremental construction stress
analysis of the structure. L-13 is analyzed through day 47, 7 days after
placement of the last lift, while the L-17 analysis is carried through 5 days
after placement of the last lift. Temperatures and stresses for L-13 and
L-17 are examined at several stages throughout the construction process.
Pile loads are presented only at the end of construction for each monolith.

The preliminary results from the second lock study (Truman, Petruska,
and Fehri in preparation) indicated that it was neither practical nor neces-
sary to analyze all possible load case combinations resulting from the use
of the upper and lower bounds on the material parameters. It was deter-
mined that, for the purposes of this study, the load cases 1 and 5 shown in
Table 1 would provide the desired bounds on the stresses and pile loads
desired. This resulted in the heat transfer analysis only being performed
for the upper bound adiabatic condition and all stress analyses using the
upper modulus of elasticity values. Load case 0 (upper bound on tempera-
ture rise and modulus and no creep or shrinkage effects), although an un-
realistic conditions, was included in the L-13 analyses. Load cases nts
(upper modulus curve but no temperature effects) was analyzed for both

Table I
Load Cases To Be Analyzed

Load Case 1  Adiabatic Modulus of
Name Temperature Elasticity Shrinkage Creep

0 Upper bound Upper bound Not used Not used

1 Upper bound Upper bound Upper bound Upper bound

5 Upper bound Upper bound Lower bound Lower bound

nts Not used Upper bound Not used Not used

1 The load case numbers correspond to those used by Truman, Petruska, and Fehri (in
preparation).
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monoliths. All of these analyses were performed using the 2-D plane
strain assumptions. An additional analysis was performed on monolith
L- 13 using 2-D plane stress assumptions for load case 5. The reason for
including this analysis will be discussed along with the L-13 results.

5
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2 Temperature Analyses of
Monoliths L-13 and L-17

General

This section will describe and present the temperature analyses of
monoliths L-13 and L-17. The FE models developed during the Phase I
study are used in Phase II. Figure 5 shows the grid used in the tempera-
ture analysis of monolith L-13. Figure 6 shows the grid used in the
temperature analysis for monolith L-17. Both the soil foundation and
structure are included within these models. The analyses were performed
with each lift being placed at 5-day intervals, until the entire structure was
in place. Since the highest temperatures would create the most severe
loading, it was decided to run the analyses for the upper adiabatic tempera-
ture rise curve only. The new adiabatic temperature rise model was
developed as part of this Phase II study (Bombich, Norman, and Garner
1991) and is presented in Figure 1 as a set of bounding curves. The upper
bound adiabatic curve which was used for this study is almost identical to
the adiabatic curve used during the Phase I study.

Presentation of Results

Temperature results in the form of contour plots are presented in
Figures 7a-7d for four stages of the construction of L-13. These stages
are 5 days after placement of lifts 2, 4, and 5 and 7 days after placement
of lift 9. Figures 8a-8d present contour plots of temperature results for
four stages of construction of 1.- 17. These stages are 5 days after place-
ment of lifts 4, 7, 13, and 16. All of these analyses use the upper bound
for adiabatic temperature rise.
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Discussion of Results

The temperature results from this study are almost identical to the
ABAQUS results from the Phase I study. This is to be expected since the
upper adiabatic temperature rise (Figure 1) curve used in this study is al-
most the identical curve used in the Phase I study. Since the temperature
rise curve is essentially the only change in these analyses from the Phase I
study, the temperature contours obtained in this study and presented in
Figures 7a-7d for monolith L-13 and Figures 8a-8d for monolith L-17 fall
almost exactly on top of the Phase I contours. The numerical results from
the two studies show the temperatures to vary by less than 1 deg F.1

These results indicate that a good approximation of temperatures within
the monoliths can be obtained for 2-D problems by the modeling proce-
dure developed in the Phase I study, the ABAQUS program, and the
material model refined during this Phase II study.

A table of factors for converting non-SI units of measurement to SI units is presented

on page v.
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3 Stress Analyses of
Monolith L-13

General

This section will describe and present the stress analyses of monolith
L-13. The FE model developed during the Phase I study will be used in
this Phase II study. Figure 5 shows the grid of L-13 to be used in the
stress analyses; however, the soil foundation elements will not be included
in the model. The piles will be included in the model as linear horizontal
and vertical springs with stiffnesses described in the Phase I report. The
analyses consist of placing (building) the monolith in lifts at 5-day inter-
vals, until the entire structure is in place. The temperatures calculated dur-
ing the heat transfer analysis performed earlier will be used as loading for
the stress analyses which include temperature effects. The revised mate-
rial constitutive model will be used. The four load cases described in
Table I will be analyzed for plane strain conditions. Additionally, load
case 5 will be analyzed using plane stress assumptions.

Presentation of Results For Monolith L-13

Stress contours are presented to show the stress distribution within the
structure for the five loading conditions analyzed by ABAQUS. Contours
of horizontal (stress 1), vertical (stress 2), out-of-plane (stress 3), and
maximum principal stress are given. The displaced structure is also pre-
sented. These stresses and deflections are given at 5 days after placement
of lifts 2, 4, and 5 and 7 days after placement of lift 9. Pile loads will also
be presented at 7 days after placement of lift 9.

Load case nts
gravity loading

The 2-D plane strain analysis was performed for the incremental con-
struction of L- 13. Only gravity loads were applied. Figures 9a-9d give

8 Chapter 3 Stress Analyses of Monolith L-13



the horizontal stress contours within the structure at four stages of con-
struction. Figures lOa-lOd give the vertical stress contours within the
structure at the same stages of construction; Figures II a-I Id give the cor-
responding out-of-plane stress contours; Figures 12a- 12d give the maxi-
mum principal stress contours; and Figures 13a-13d give the deflected
shapes.

Load case 0
gravity and thermal loading

The 2-D plane strain analysis was performed again for the incremental
construction of L-13 with thermal loadings added but no creep or shrink-
age considered. Figures 14a-14d give the horizontal stress contours
within the structure at the four stages of construction; Figures 15a-15d
give the corresponding vertical stress contours; Figures 16a-16d give the
out-of-plane stress contours; Figures 17a-17d give the maximum principal
stress contours; and Figures 18a-18d give th:e deflected shapes.

Load case 1
gravity and thermal loading

Again, the 2-D plane strain analysis was performed for the incremental
construction of L- 13 under gravity and thermal loads but with the upper
bound on both creep and shrinkage included. Figures 19a-19d give the
horizontal stress contours within the structure at the four stages of con-
struction; Figures 20a-20d give the corresponding vertical stress contours;
Figures 21a-21d give the out-of-plane stress contours; Figures 22a-22d
give the maximum principal stress contours; and Figures 23a-23d give the
deflected shapes.

Load case 5
gravity and thermal loading

The 2-D plane strain analysis was again performed for the incremental
construction of L-13. This time the lower bounds on both creep and
shrinkage were used while both gravity and thermal loads were applied.
Figures 24a-24d give the horizontal stress contours within the structure at
the four stages of construction; Figures 25a-25d give the corresponding
vertical stress contours; Figures 26a-26d give the out-of-plane stress con-
tours; Figures 27a-27d give the maximum principal stress contours; and
Figures 28a-28d give the deflected shapes.

Chapter 3 Stress Analyses of Monolith -113 9



Load case 5PS
gravity and thermal loading

A 2-D plane stress analysis was performed for the incremental construc-
tion of L- 13 for gravity and thermal loadings using the lower bounds for
both creep and shrinkage. Figures 29a-29d present horizontal stress con-
tours within the structure at the four stages of construction; Figures 30a-
30d give the corresponding vertical stress contours; Figures 31 a-3 I d give
the out-of-plane stress contours; Figures 32a-32d give the maximum prin-
cipal stress contours; and Figures 33a-33d give the deflected shapes.

Pile load summary

Table 2 presents a summary of the resulting pile loads at the end of con-
struction (placement of lift 9 plus 7 days) for the five analyses performed.
These may be compared to the pile loads reported in the Phase I study
(Bombich, Norman, and Jones 1987).

Table 2

Vertical Pile Loads for Monolith 13 (7 Days After Placement of Top Lift)

Gravity Only Gravity and Thermal Loading (Upper Mod/Adiabatic)

Load Case 5SP
Load Case 0 Load Case 1 Load Case 5 (Lower
(No (Upper (Lower Creep/Shrink

Load Case nts Creep/Shrink) Creep/Shrink) Creep/Shrink) Plane Stress)
P1le No. kips kips kips kips kips

1 77.5 60.6 68.4 73.1 72.4

2 81.2 64.3 73.4 77.3 76.7

3 91.9 74.8 87.5 89.1 88.6

4 108.1 90.7 109.5 107.2 107.1

5 145.0 126.8 157.8 147.7 147.9

6 178.0 158.9 198.7 182.8 183.6

7 200.2 182.1 223.5 205.4 206.4

8 205.5 192.0 223.5 208.7 209.7

9 193.3 193.3 196.5 192.9 193.4

10 185.7 197.8 181.2 184.6 184.8

11 180.0 207.9 169.9 179.8 179.6

12 177.5 226.1 165.0 180.2 179.6
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Discussion of Results for Monolith L-13

Load case nts

Load case nts stress contours show results expected for the incremental
construction with gravity loading only. The horizontal stresses (Fig-
ures 9a-9d) show bending at the lock center line with stresses between
-300 psi and 150 psi. Another stress concentration is located just inside
the lock wall. Here the base slab, acting as a beam on an elastic founda-
tion, bends under its own weight as the central portion deflects downward.
Later, this bending is increased as the culvert and wall sections are plac';d.
The maximum horizontal stress at this location is approximately 250 psi.
The vertical (Figures IOa-0Od) and out-of-plane (Figure 1 la-I Id) stresses
did not display any unusual characteristic. The maximum principal
stresses (Figures 12a- 1 2d) follow a pattern similar to that of the horizontal
stresses. The deflected shape plots (Figures 1 3a- I 3d) demonstrate the ob-
servation thIat the base slab initially deflects downward in the center.
Later, as construction continues, the portion of the slab under the culvert
and wall deflects downward almost the same amount. Very little horizon-
tal deflection is indicated, as expected.

Load case 0

Load case 0 deflected shapes (Figures 18a-18d) indicate a substantial
amount of positive horizontal movement along the base slab. This is due
to the expansion of the concrete resulting from an increase in temperature.
This expansion results in an excessive outward (to the right) and down-
ward movement of the right end of the base slab. Also, the plane strain
conditions (fixed against movement) at the out-of-plane faces cause very
large compressive out-of-plane stresses (Figures 16a-16d) to develop as
expansion in this direction is restricted. These stresses are in excess of
350 psi and correspond very closely in location to the high temperatures
obtained in the heat transfer analysis. These stresses should be expected
for the load case under consideration, however, this is not a condition
which will actually exist in the real structure. Creep and shrinkage, along
with small movements in this out-of-plane direction, would relieve most,
if not all, of these stresses. The horizontal (Figures 14a-14d), vertical
(Figures 15a-15d), and maximum principal (Figures 17a-17d) stress con-
tours also reflect higher values than from load case nts. These higher val-
ues are the result of the thermal loads, which occur with no relief
mechanism, and the Poisson effect from the very large out-of-plane
stresses. This load case is unrealistic because stresses due to thermal
loads will be reduced significantly by creep. Thermal expansion should
be considered only if creep is also included.

Chapter 3 Stress Analyses of Monolith L-13



Load case 1

The deflected shape plots (Figures 23a-23d) show that the thermal ex-
pansion in the previous load case are negated by the creep and shrinkage
effects included here. The upper bounds for creep and shrinkage which
were used here not only cancel the expansion, but actually cause an over-
all contraction (shrinkage) of the monolith in the out-of-plane direction.
This creates the unusual condition of having the two out-of-plane faces of
the monolith slice actually holding on to the monolith as it tries to shrink.
This causes high tension stresses (Figures 21a-21d) to develop in this out-
of-plane direction which are as large in magnitude.as the corresponding
compression stresses found in the previous load case. This effect, a mono-
lith being held in tension by the two surrounding vertical construction
joints, is not realistic. The idea of performing a plane stress analysis re-
sulted form this finding, since the plane stress assumption would allow the
two faces to move toward each other if the shrinkage was large enough.
The horizontal (Figures 19a-19d), vertical (Figures 20a-20d), and maxi-
mum principal (Figures 22a-22d) stress contours reflected reasonable
stresses within the structure for the given loadings. The deflected shape
plots indicated that the inclusion of creep allowed the base slab to relax
thereby causing the vertical deflections to be greatest underneath the outer
wall section. The vertical loads tend to have a more localized effect when
creep was included.

Load case 5

This load case has the same loadings as load case 1, except it used the
lower bounds on creep and shrinkage. The deflected shape plots (Fig-
ures 28a-28d) are very similar to load case 1 with slightly smaller magni-
tudes. Since the creep and shrinkage effects are lower, the horizontal
contraction of the base slab is less. The vertical deflection of the slab
under the wall is also smaller than in load case 1. This reduction in shrink-
age effects causes the contraction in the out-of-plane direction to be less,
thereby causing a smaller tension stress (Figures 26a-26d) to develop in
that direction. This out-of-plane stress, although smaller, is still unrealis-
tic. The horizontal (Figures 24a-24d), vertical (Figures 25a-25d), and
maximum principal (Figures 27a-27d) stresses also follow a similar pat-
tern to load case 1, but again with reduced magnitudes.

Load case 5PS

This load case (same loading and material properties as load case 5,
but with a plane stress assumption) was analyzed when it was found that
the plane strain assumption created the very high tensile stresses in the
out-of-plane direction when creep and shrinkage effects were used. It was
determined that this may be a more realistic model since the out-of-plane
restraint against shrinkage will not occur to this degree in the real struc-
ture. If the shrinkage effects are large enough to overcome the thermal
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expansion and cause the overall length of the monolith to decrease, a
plane stress analysis should be used in lieu of the plane strain analysis.
Even if a 3-D analysis were available, some assumption would be neces-
sary at the monolith faces which would still create essentially the same
choices for the analyst.

The deflected shape plots (Figure 33a-33d) show the in-plane deflec-
tions of the plane stress and plane strain cases to be essentially identical.
This was expected. The out-of-plane stresses (Figures 3la-31d) were re-
duced to almost zero. This reduction id due to the free movement in that
direction. Although this may not be exactly what actually occurs, it is
probably closer to reality than the plane strain analysis. The horizontal
(Figures 29a-29d), vertical (Figures 30a-30d), and maximum principal
(Figures 32a-32d) stresses are very similar to the plane strain stress re-
sults but are reduced very slightly. This reduction is caused by the re-
duced Poisson effect from the out-of-plane stresses. Essentially, the effect
of going to the plane stress assumption was that the very high, unrealistic
out-of-plane stresses were eliminated, and all other stresses and deflec-
tions remained unchanged.

Pile loads

The pile loads from all of the above load cases are presented in
Table 2. These pile loads should be compared to the Phase I results
(Bombich, Norman, and Jones 1987) to get a better understanding of the
effects of the revised material model. This comparison shows that the
new model gives somewhat similar pile load distributions but reduces the
maximum pile loads predicted by the Phase I study. This is largely due to
the reduced creep effect which caused the structure to over relax and
allow the vertical loads to be carried mostly by the piles directly below
them. The new model spreads the vertical loading out over the pile foun-
dation more evenly.

This redistribution is demonstrated by the slight variation of pile loads
observed in Phase I and those observed in load case nts of Phase II. The
change is less than 3 kips per pile and shows a move toward a uniform
pile loading. These results are as expected for the new constitutive
model. The maximum pile load in this load case is 205 kips, similar to
that of 208 kips from the Phase I study. These new results are even closer
to the gravity turn-on analysis results which were used by USAE District,
St. Louis, to design the pile. The design pile load was 200 kips.

Load case 0 gives the largest vertical pile loads toward the right end of
the slab. This is caused by the thermal expansion (to the right) and the
downward deflection of the right end of the slab due to thermal bending.
This thermal bending is a result of constructing the slab in lifts which are
at different temperatures. This layered thermal expansion effect of the
composite slab causes it to bend downward at the right end. This is
shown by examining the deflected shape plots for this load case. The
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maximum pile load is 226 kips, higher than desired, while the Phase I
study gave 230 kips as the maximum load. Again, it should be pointed out
that this load case is unrealistic and gives a pile load distribution which
over loads some piles and under loads others.

Load cases 1 and 5 will be discussed together since they are identical,
except for the amount of creep and shrinkage included. The pile load dis-
tributions are similar to the Phase I study with the magnitudes of the heav-
ily loaded piles being smaller in the new analyses. This is due mainly to
the new material model containing a smaller creep effect. This reduced
creep effect causes the vertical structural loadings to be more evenly dis-
tributed over the entire pile foundation. This is clearly shown when the
upper creep (load case 1) and lower creep (load case 5) pile loads are com-
pared. The maximum pile load reduces from 224 kips (load case 1) to
209 kips (load case 5) when the reduced creep effect is used. These maxi-
mum pile loads occur under the wall stem where the greatest vertical load
is being applied to the slab. The lower creep effects are assumed to be
more realistic for this concrete, therefore, the load case 5 results show the
pile loads to be reasonably close to the 200-kip value used in the design.

The plane stress analysis (load case 5PS) was performed to see what ef-
fect the excessive out-of-plane stress due to shrinkage would have on the
pile loads. As seen in the results, there was nominally less than a 1-kip
difference in each pile. It was concluded, therefore, that there was no
need to reanalyze any load case that was performed using the plane .;rain
condition. The pile loads could be assumed to be the same for the plane
stress case.
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4 Stress Analyses of
Monolith L-17

General

This section will describe and present the stress analyses of monolith
L-17. The FE model developed during the Phase I study will be used in
this Phase II study also. Figure 6 shows the grid of L-17 to be used in the
stress analyses; however, the soil foundation elements will not be included
in the model. The piles will be included in this model as linear horizontal
and vertical springs with stiffnesses described in the Phase I report. The
analyses consist of placing (building) the monolith in lifts at 5-day inter-
vals, until the entire structure is in place. The temperatures calculated
during the heat transfer analysis of L-17, performed earlier, will be used
as loading for all stress analyses including temperature effects. The
revised material constitutive model will be used. Three of the four load
cases described in Table I will be analyzed for plane strain conditions.
Load case 0 will not be analyzed since it is an unrealistic condition.

Presentation of Results For Monolith L-17

Stress contours are presented to show the stress distribution within the
structure for the three loading conditions analyzed by ABAQUS. Con-
tours of horizontal (stress 1), vertical (stress 2), out-of-plane (stress 3),
and maximum principal stresses are given. The displaced structure is also
presented. These stresses and deflections are given at 5 days after place-
ment of lifts 4, 7, and 16. Pile loads will also be presented at 5 days after
placement of lift 16.

Load case nts
gravity loading

The 2-D plane strain analysis was performed for the incremental con-
struction of L-17. Gravity loads only were applied. Figures 34a-34c give
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the horizontal stress contours within the structure at three stages of con-
struction; Figures 35a-35c give the vertical stress contours within the
structure at the same stages of construction; Figures 36a-36c give the cor-
responding out-of-plane stress contours; Figures 37a-37c give the maxi-
mum principal stress contours; and Figures 38a-3c give the deflected
shapes.

Load case 1
gravity and thermal loading

Again, the 2-D plane strain analysis was performed for the incremental
construction of L- 17 under gravity and thermal loads but with the upper
bounds on both creep and shrinkage included. Figures 39a-39c give the
horizontal stress contours within the structure at the three stages of con-
struction; Figures 40a-40c give the corresponding vertical stress contours;
Figures 41a-41c give the out-of-plane stress contours; Figures 42a-42c
give the maximum principal stress contours; and Figures 43a-43c give the
deflected shapes.

Load case 5
gravity and thermal loading

The 2-D plane strain analysis was again performed for the incremental
construction of L-17. This time the lower bounds on both creep and
shrinkage were used while both gravity and thermal loads were applied.
Figures 44a-44c give the horizontal stress contours within the structure at
the three stages of construction; Figures 45a-45c give the corresponding
vertical stress contours; Figures 46a-46c give the out-of-plane stress con-
tours; Figures 47a-47c give the maximum principal stress contours; and
Figures 48a-48c give the deflected shapes.

Pile load summary

Table 3 presents a summary of the resulting pile loads at the end of con-
struction (placement of lift 16 plus 5 days) for the three analyses per-
formed. These may be compared to the pile loads reported in the Phase I
study (Bombich, Norman, and Jones 1987).

Discussion of Results for Monolith L-17

Load case nts

The results from the gravity only load case show a more uniform verti-
cal deflection (Figures 38a-38c) of the base slab than the L-13 analysis.
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Table 3
Vertical Pile Loads for Monolith 17 (5 Days After Placement of
Top Lift)

Gravity and Thermal Loading
Pile Gravity (Upper Mod/Adiabatic)

Lower Upper
Only Creep/Shrink Creep/Shrink

No. kips kips kips

1 100.2 97.7 95.2

2 102.7 99.1 96.6

3 106.2 98.7 93.8

4 177.7 155.1 141.5

5 183.5 144.6 120.0

6 192.9 135.0 92.1

7 201.6 115.8 95.5

8 214.6 129.9 147.4

9 226.3 168.2 192.9

10 241.7 198.2 235.8

11 254.2 223.2 267.6

12 267.6 245.5 294.3

13 278.8 264.1 312.6

14 286.6 280.0 322.2

15 294.7 300.0 330.1

16 302.3 324.4 333.8

17 320.2 367.6 352.2

18 349.1 430.9 385.1

19 259.5 344.2 209.1

This is due in part to the pile distribution underneath the slab. At the end
of construction, the vertical deflections increase almost linearly from the
center line to the right end of the base slab. The horizontal stress contours
(Figures 34a-34c) show the bending which occurs, as expected, at the cen-
ter line. The vertical stresses (Figures 35a-35c) at any location are mostly
the result of the concrete load directly overhead. The maximum principal
stresses (Figures 37a-37c) follow the same general pattern as the horizon-
tal stresses. The out-of-plane stresses (Figures 36a-36c) are very small
since no thermal loading is included.
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Load case 1

When thermal effects and the upper bounds on creep and shrinkage are
included, several phenomena occur. First, as the horizontal (Figures 39a-
39c) and maximum principal (Figures 42a-42c) stress contours and the
deflected shape plots (Figures 43a-43c) are inspected, it is evident that a
vertical crack in the base slab appears to begin with placement of the
seventh lift. This crack is located at the top of the base slab, between the
one-third and one-half points along the slab. It appears to propagate com-
pletely through the slab by the end of construction. This location is proba-
bly connected to a change in pile stiffness in this area. While this crack
was not indicated by the Phase I study, there was evidence from the maxi-
mum principal stress plots for the load case considering thermal and grav-
ity loading without creep and shrinkage using UMAT I, that a stress
buildup was occurring in the same general location. Another phenomenon
is an instability which occurred immediately above the culvert. This
stress state was so sensitive that the form work supporting the top of the
culvert had to be removed a couple of days early so the numerical distur-
bance they created would not cause the top of the culvert to crack. Once
this form work was removed, no other substantial cracking in this area
occurred.

Several points should be kept in mind when considering these cracks.
First, the crack appears in the top of the slab and propagates slowly. The
slab is reinforced for just such moment resistance. The constitutive model
used here does not include the tensile strength of the rebars. The model
will eventually include the rebars, but it has not yet been thoroughly
tested with them included. It is obvious that once the rebars are available,
they will carry this tension stress which the present concrete can not carry.
Second, the smeared crack constitutive model used, coupled with the very
coarse grid (with respect to crack propagation analysis), tend to be a poor
way to attempt to predict crack propagation. To attempt to model the
crack propagation with the present smeared crack model would require a
much more refined grid, which is impractical to run due to prohibitive
computer costs. The result of using this coarse grid is that there are only
two or three elements through the thickness of a bending member. Once
there is a tension stress of significant magnitude in the member and one
element cracks, the remaining one or two elements must carry the entire
tensile stress. This may lead to cracking in the adjoining elements, and
the process continues until the entire cross section is cracked. If there
were more elements across the section, the tensile stress could be redistrib-
uted in smaller increments to the remaining elements, thereby arriving at a
stable solution.

The very large :ensile stresses (Figures 41a-41c) in the out-of-plane di-
rection once again occurred as a result of the plane strain assumptions.
From the L-13 analyses, it was determined that these do not significantly
affect the in-plane stresses. It was also determined that the pile loads are
impacted very little by them. Once it is understood that the out-of-plane
stresses will not occur to this degree, the remaining stresses and deflections
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are realistic, with the exception of the crack. The occurrence of the crack
still requires more investigation. However, if the reinforcement were in-
cluded in the model, these rebars would carry the tensile load in the mem-
ber. This would minimize, if not eliminate, the crack, thereby minimizing
the significance of the crack in terms of the structural stability.

Load case 5

The lower creep and shrinkage parameters were used in this analysis.
As in the L-13 analysis, the use of these smaller values gave similar re-
sults. Again, the horizontal (Figures 44a-44c) and maximum principal
(Figures 47a-47c) stress contours indicate that a crack occurred in the
base slab. The deflected shapes (Figures 48a-48c) clearly show the crack
developing as in load case 1. The out-of-plane tensile stresses (Figures
46a-46c) were still present, but at a slightly smaller magnitude. The form
work had to be removed early from the top of the culvert as in load case 1.

Pile loads

The pile loads from the gravity only loading are very close (within
3 percent) to the results from the Phase I study for the same load case.
These maximum loads of 349 kips are well within the approximate
400 kips used in the design. For load cases 1 and 5 the maximum loads
are 385 kips and 430 kips, respectively, and occur toward the right end of
the slab. These compare to 360 kips from the Phase I study which oc-
curred under the center of the wall. One concern in the Phase I study was
that obviously too much creep was being included in the material model.
These new analyses show that as less creep is included, the pile loads do
tend toward a more uniformly distributed pattern with the maximum load
moving to the right end of the slab. Since it is believed that the actual
creep value is closer to the middle-to-low range of the values used here,
the maximum pile load should be at or below the design value of 400 kips.

Another interesting point is that even with the crack through the base
slab in load cases I and 5, the pile loads did not show large adverse ef-
fects. The two piles immediately around the crack did show a reduced
load of about 25 percent between the lower and upper creep models. The
adjacent piles in the upper creep model took this additional load. The re-
distribution in the lower creep model did not take place in such a pro-
nounced manner. This is probably due to the fact that the crack did not go
completely through the slab. Again, it is noteworthy that the pile loads
did not show drastic changes, even with the structure substantially
cracked.
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5 Conclusions and
Recommendations

It is shown that the analysis techniques developed in Phase I of this
study, coupled with the revised constitutive model, can adequately predict
stresses and displacements within a structure and loads in the supporting
piles when gravity, thermal, and services loads are applied in a 2-D
analysis. The limiting points discussed earlier should be kept in mind
when these analyses are performed. Proper care should be exercised to
ensure that any cracks are controlled and do not adverse'y affect the
stability of the structural system. Proper grid sizes should be used
(Truman, Petruska, and Fehri in preparation) to allow both an accurate
temperature and stress analysis.

It is obvious from this study that more attention should be given to the
use of reinforcement in the concrete to eliminate the very sensitive
stability situations which occur when an unreinforced concrete element is
on the verge of cracking. This would also eliminate the need for using a
very refined mesh in analyses where this smeared crack model is used.

While these structures were originally analyzed as a plane strain prob-
lem, it was evident as the study proceeded that this may not be the best
way to analyze the structure. The presence of significant shrinkage causes
the out-of-plane boundary conditions for plane strain to put the structure
into substantial tension it that direction. It is obvious that this does not ac-
tually occur in the real structure. It is also true that if the structure does
not really shrink (when thermal expansion and shrinkage are combined) in
the out-of-plane direction, the plane strain condition may be closer to
what really happens. Addressing this problem with a 3-D analysis may
not give the correct answer either, since some boundary conditions still
must be applied to these faces. This question still should be investigated
further, even though it is shown by comparing the plane strain and plane
stress results that this out-of-plane activity does not significantly affect
the in-plane stresses or pile loads. If substantial out-of-plane loadings are
present, this bihavior may be of far more importance and require a more
thorough investigation.
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Figure l1c - Out-of-plane stress contours in L-13,
5 days after lift 5 is placed,
Gravity loading only, No creep/shrinkage
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Figure lid - Out-of-plane stress contours in L-13,
7 days after lift 9 is placed,
Gravity loading only, No creep/shrinkage
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Figure 12a - Max. Principal stress contours in L-13,
5 days after lift 2 is placed,
Gravity loading only, No creep/shrinkage
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Figure 12b - Max. Principal stress contours in L-13,
5 days after lift 4 is placed,
Gravity loading only, No creep/shrinkage
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Figure 12c - Max. Principal stress contours in L-13,
5 days after lift 5 is placed,
Gravity loading only, No creep/shrinkage
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Figure 12d - Max. Principal stress contours in L-13,
7 days after lift 9 is placed,
Gravity loading only, No creep/shrinkage
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Figure 13a - Displaced shape of L-13, 5 days after lift 2
is placed, Gravity loading only, No creep/shrinkage
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Figure 13b - Displaced shape of L-13, 5 days after lift 4
is placed, Gravity loading only, No creep/shrinkage
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Figure 13c - Displaced shape of L-13, 5 days after lift 5
is placed, Gravity loading only, No creep/shrinkage
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Figure 13d - Displaced shape of L-13, 7 days after lift 9
is placed, Gravity loading only, No creep/shrinkage
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Figure 14a - Horizontal stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure l4b - Horizontal stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 14c - Horizontal stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 14d - Horizontal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 15a - Vertical stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 15b - Vertical stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 15c - Vertical stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 15d - Vertical stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 16a - Out-of-plane stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 16b - Out-of-plane stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure l6c - Out-of-plane stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 16d - Out-of-plane stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 17a - Max. Principal stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, No creep/shrinkage



MIAX PQNCIPAL STRESS

I VALUE
14 - -0e~ 2

2 -S Se[-el

3 -2 27E-t3

5 .1I ee-02

7 .2 OOE-02
1 -2 SEe02
3 -3 a&E*82

A'

LIFT4 - M13 - UPPER ADIAB/MOD NO/CREEP/SHRINK.
STEV '6 INCREMENT ABAOUS VERSION 4-S-171

Figure 17b - Max. Principal stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 17c - Max. Principal stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 17d - Max. Principal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 18a - Displaced shape of L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, No creep/shrinkage



D ISPI.
NAG FACTOR - .2 SE.02

SOLID LIMES DISPLACED MESH

DASHED LINES - ORIGINAL MESH

LIFT4 - M'3 - UPPER ADIAB/MOD NO/CREEP/SHRINK/
STEo 15 INCREIENT ABAOUS VEQSION 4-5-171

Figure 18b - Displaced shape of L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 18c - Displaced shape of L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, No creep/shrinkage
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Figure 18d - Displaced shape of L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, No creep/shrinkage



s rR~ss i

I D VALUE
1 -3 OOE.e2

2 -2 5eE-02
3 -2 OSE÷02
4 -t Se-.02

'-I - BE-02
-5 OE.-01

' .3 09[-13
• .5 SSE.II

4 .1 OSEt02
'C 1 59E.02
*2 00t.e2

" -2 'aE-e2
13 -3 OOt.021

L 1F 2'M 1mP' 1 Mr (~N K C PE E
rTED f P4CRE4ENT 484OUS i ERS1O4 4-5-171

Figure 19a - Horizontal stress con ours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 19b - Horizontal stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 19c - Horizontal stress contours in L-13,
5 days after lift 5 is placed,Gravity & thermal loading, Upper creep/shrinkage
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Figure 19d - Horizontal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 20a - Vertical stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 20b - Vertical stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 20c - Vertical stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 20d - Vertical stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 21a - Out-of-plane stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 21b - Out-of-plane stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Upper creep/shrinkage



stRESS 3
1 D VALUE

2 -4 SOE@e2
3 -4 e.E-02
4 -3 SOE-02
1 -3 OE0
S -2 $eE÷02

7 2 OSE-02
C -1SOE-02

J -t eE-02

It +9 09E-13
'2 +S 99Eý8t
'3 -

4~3

LIFT5 - M1 3 - UPPER ADIABATIC/MOD/SHRINK/CREEL
'!En 2? !NCREMENT 4 84OUS VERZSION 4-5-171

Figure 21c - Out-of-plane stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 21d - Out-of-plane stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 22a - Max. Principal stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 22b - Max. Principal stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 22c - Max. Principal stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 22d - Max. Principal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 23a - Displaced shape of L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 23b - Displaced shape of L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 23c - Displaced shape of L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 23d - Displaced shape of L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Upper creep/shrinkage
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Figure 24a - Horizontal stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 24b - Horizontal stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 24c - Horizontal stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 24d - Horizontal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 25a - Vertical stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 25b - Vertical stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 25c - Vertical stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 25d - Vertical stress contours in L-13,
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3ravity & thermal loading, Lower creep/shrinkage
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Figure 26a - Out-of-plane stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 26b - Out-of-plane stress contours in L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 26c - Out-of-plane stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 26d - Out-of-plane stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 27a - Max. Principal stress contours in L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 27b - Max. Principal stress contours in L-13,

5 days after lift 4 is placed, creep/shrinkage
GravitY & thermal loading, Lower



"NAS. PRINCIPAL STRESS
I D VALUE

2 -5.08C.61
I -4 54-13
4 -6 SSEof

-3 *6E+62

-3 *1SOC.S2

-4 OGE-02
'2 +4 54E+02

3 S #*E.62

LOWER/SHRINK/CREEP
LIFTS M13 -UPPER ADIABATIC/MOD

StEV' 26 INCRERENT 48tSOUS VERSION 4-S-171

Figure 27c - Max. Principal stress contours in L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Lover creep/shrinkage
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Figure 27d - Max. Principal stress contours in L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 28a - Displaced shape of L-13,
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 28b - Displaced shape of L-13,
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 28c - Displaced shape of L-13,
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 28d - Displaced shape of L-13,
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 29a - Horizontal stress contours in L-13 (PS),
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 29b - Horizontal stress contours in L-13 (PS),
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 29c - Horizontal stress contours in L-13 (PS),
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 30a - Vertical stress-contours in L-13 (PS),
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 30b - Vertical stress contours in L-13 (PS),
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 30c - Vertical stress contours in L-13 (PS),
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 30d - Vertical stress contours in L-13 (PS),
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 31a - Out-of-plane stress contours in L-13 (PS),
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 31b - Out-of-plane stress contours in L-13 (PS),
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage



0 0 VALUE
I -S SOE-02
2 -4 SOE-02
3 -4 SOE-92
4 -3 '.@E+02
S -3 OSE-02
6 -2 SOE.02
1 -2 99E+02
"C -1 2 SE-82
3 -I 9E+02

'0 -s eSe-01
' - OOE(-1l
'2 -S OSE-9i
1) -I SSE÷02

1 4 1

I LOWER/SHRINK/CREEP (PS)

LIFTS - M13 - UPPER ADIABATIC/MOD
STE' 2e INCRE4ET &u5 C S *lN 4-5-171

Figure 31c - Out-of-plane stress contours in L-13 (PS),
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 31d - Out-of-plane stress contours in L-13 (PS),
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 32a - Max. Principal stress contours in L-13 (PS),
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 32b - Max. Principal stress contours in L-13 (PS),
5 days after lift 4 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 32c - Max. Principal stress contours in L-13 (PS),
5 days after lift 5 is placed,
Gravity & thermal loading, Lower creep/shrinkage
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Figure 32d - Max. Principal stress contours in L-13 (PS),
7 days after lift 9 is placed,
Gravity & thermal loading, Lower creep/shrinkage



DISPL
HAG FACTOR - .2 5S-02

:OLID LINES - DISPLACEO MESH
DASHED LINES - ORIGINAL HESH

LOWER/SHRINK/CREEP (PS)
LIFT2 - M!3 - UPOER ADIABATIC/MOD

Figure 33a - Displaced shape of L-13 (PS),
5 days after lift 2 is placed,
Gravity & thermal loading, Lower creep/shrinkage



DISPL
"MAS FACTOR - *2.5Ee2
SOLID LINES - DISPLACED MESH
DASHED LINES - ORIGINAL RESH

__I__ - _-.- --:• __ :I.._ -_ .4

LOWER/SHRINK/CREEP (PS)
LIFT4 - M13 UPPER ADIABATIC/MOD
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Figure 34a - Horizontal stress contours in L-17,
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Gravity loading only, No creep/shrinkage
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Figure 34c - Horizontal stress contours in L-17,
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Figure 35b - Vertical stress contours in L-17,
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Gravity loading only, No creep/shrinkage
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Figure 35c - Vertical stress contours in L-17,
5 days after lift 16 is placed,
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Figure 36a - Out-of-plane stress contours in L-17,
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Figure 36c - Out-of-plane stress contours in L-17,
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Gravity loading only, No creep/shrinkage
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Figure 37c - Max. Principal stress contours in L-17,
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Gravity loading only, No creep/shrinkage
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Figure 39a - Horizontal stress contours in L-17,
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Gravity & thermal loadings, Upper creep/shrinkage
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Figure 39b - Horizontal stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 39c - Horizontal stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 40a - Vertical stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 40b - Vertical stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 40c - Vertical stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 41a - Out-of-plane stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 41b - Out-of-plane stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 41c - Out-of-plane stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 42a - Max. Principal stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 42b - Max. Principal stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 42c - flax. Principal stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 43a - Displaced shape of L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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5 days after lift 7 is placed,
Gravity & thermal loadings, Upper creep/shrinkage
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Figure 44a - Horizontal stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 44b -Horizontal stress contours in L-l7,
5 days after lift 7 is placed,
Gravity & thermal loadings, Lower creep/shrinkage



I D VAL~JE

z -2 ~S@E-2
3 -2 OOE-02
4 -' E92 - -PB-t Ec-s2

S-s eeE*St
-9 09E-13 -

c -S 9aE.01

9 .1 9SC.62 -
18 -1 SOE-02

-2 SSE.62
13 -3 aff.82

21

LOWER/SHRINK. CREEP
LIF T16 -- UPPER!ADIABATIC,'MOD

STEP 54 INCRE94E'41 45IOIS VERSION 4-5-I17

Figure 44c -Horizontal stress contours in L-l7,
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Figure 45a - Vertical stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 45b - Vertical stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Lower creep/shrinkage



D VALJE
1 -3 ZSE-02

2 -2 SeE-02
3 -2 M-E*02

• -5 E-81
5 -I t E0

--' 13
-S9 eE-01

9 1 M-Ee2

-2 W5eE-e2

13 -3 *SE-02

2---LOWER/SHRINK/CREEP
LIFT'6 - M17 - DPPER/ADIABATIC,'> OD

STEý' 54 1PNCREI4'T 464OAB VERSICN 4-5-171

Figure 45c - Vertical stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 46a - Out-of-plane stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, lower creep/shrinkage
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Figure 46b - Out-of-plane stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 46c - Out-of-plane stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 47a - Max. Principal stress contours in L-17,
5 days after lift 4 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 47b - Max. Principal stress contours in L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 47c - Max. Principal stress contours in L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 48a - Displaced shape of L-17,
5 days after lift 4 is placed,
Gravity . thermal loadings, Lower creep/shrinkage
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Figure 48b - Displaced shape of L-17,
5 days after lift 7 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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Figure 48c - Displaced shape of L-17,
5 days after lift 16 is placed,
Gravity & thermal loadings, Lower creep/shrinkage
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REVISED MATERIAL INPUT PARAMETERS
FOR MONOLITH L-17

*MATERIAL ,ELSET=LIFTL
*USER MATERIAL ,CONSTANTS- 10
2.718E06,0.17,1000.,l.0E-04,4.5E-06,0.25,1.1,0.618,
70. 10.0001
*DEPVAR
60
*MATERIAL,ELSET=LIFT2
*USER MATERIAL ,CONSTANTS= 10
2. 718E06 ,0. 17, 1000. ,1.OE-04 ,4. 5E-06 ,0. 25,1. 1,0.618,
70. ,5.0001
w DEPVAR
60
*MATERIAL, ELSET=LIFT3
*USER MATERIAL ,CONSTANTS=10
2. 718E06 ,0. 17, 1000., 1. OE-04 ,4 .5E-06 ,0. 25, 1. 1,0. 618,
70. ,10.0001
*DEPVAR
60
*MATERIAL ,ELSET=LIFT4
*USER MATERIAL ,CONSTANTS= 10
2. 718E06 ,0. 17, 1000., 1. OE-04 ,4. 5E-06 ,0. 25, 1.1,0. 618,
70. ,15.0001
*DEP VAR
60
*MATERIAL ,ELSET=LIFT5
*USER MATERIAL ,CONSTANTS= 10
2. 718E06 ,0. 17, 1000 .,1. OE-04 ,4. 5E~-06 ,0. 25, 1. 1,0. 618,
70. ,20.0001
*DEPVAR
60
*MATERIAL ,ELSET=LIFT6
*USER MATERIAL ,CONSTANTS= 10
2.718E06,0.17,1000. ,1.OE-04,4.5E-06,0.25,1.1,0.618,
70.,.25.0001
*DEP VAR
60
*MATERIAL ,ELSET=LIFT7
*USER MATERIAL ,CONSTANTS= 10
2.718E06,0.17,1000.,lOE-04,4.5E-06,0.25,1.1,0.e18,
70. ,30.0001
*DEPVAR
60
*MATERIAL ,ELSET=LIFT8
*USER MATERIAL ,CONSTANTS= 10
2. 718E06 ,0. 17, 1000. ,1.OE-04 ,4. 5E-06 .0. 25,1. 1,0. 618,
70. ,35.0001
*DEPVAR
60
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*MATERIAL ,ELSET=LIFT9
*USER MATERIAL ,CONSTANTS= 10
2.718E06.0.17,1000.,.0.E-04,4.5E-06o0.25,1.1,0.618,
70. .40.0001
*DEPVAR
60
*MATERIAL ,ELSET=LIFT10
*USER MATERIAL ,CONSTANTS=10
2.718E06,0.17,1000.,l.0E-04,4.5E-06,0.25,1.1,0.618,
70.,45.0001
* DIPVAR
60
*MATERIAL,ELSET=LIFT1 1
*USER MATERIAL ,CONSTANTS= 10
2.718E06,0.17,1000.,1.OE-04,4.5E-06,0.25,1.1,0.618,
70.,.50.0001
*DEP VAR
60
*MATERIAL ,ELSET=LIFT1 2
*USER MATERIAL ,CONSTANTS= 10
2. 718E06 .0. 17, 1000. .1. 0-04 .4. 5E-06 .0. 25,1.1,0. 618,
70. ,55.0001
* DIPVAR
60
'MATERIAL, ELSET=LIFT13
*USER MATERIAL ,CONSTANTS= 10
2 .718106 .0.17. 1000., 1. 01-04 ,4. 51-06 .0. 25, 1. 1,0. 618,
70.,.60.0001
* DIPVAR
60
*MATERIAL .,ELSETZLIFT14
*USER MATERIAL, CONSTANTS= 10
2.718E06,0.17,1000.,1.OE-04,4.5E-06.0.25,1.1,0.618,
70.,65.0001
*DEPVAR
60
*MATERIAL. ELSET=LIFT15
*USER MATERIAL ,CONSTANTS- 10
2. 718106 .0. 17, 1000 ., 1. 0-04 .4. 51-06 ,0. 25, 1. 1,0. 618,
70.,.70.0001
* DIPVAR
60
*MATERIAL ,ELSET=LIFT16
* USER MATERIAL ,CONSTANTS= 10
2 .718106 .0 .17, 1000.,.1. 0-04 .4. 51-06 .0. 25, 1. 1,0. 618,
70.,.75.0001
'DEPVAR
60
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